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Main Ideas

Traditional optimal experimental design (OED) methods are blind to misspecification in the

hyperparameters of the inverse problem. Robust OED methods aim to address this, but have

been
limited to linear inverse problems, or limited to low-dimensional problems.

In order to solve robust OED problems for infinite-dimensional nonlinear Bayesian inverse

problems governed by PDEs, we propose a formulation with

a budget-constrained probabilistic encoding of the sensor locations, and

adjoint-based eigenvalue sensitivity techniques for differentiation.

Worst-Case Robust OED Formulation

Consider the set of candidate sensor locations S = {s1, s2, . . . , sNd}, and let Nb � Nd be the

budget constraint on the number of sensors. Let ξ ∈ {0, 1}Nd be a binary encoding of the

observational configuration such that ξi determines whether si is active, and let θ ∈ Θ be

the uncertain parameter. The ROED problem is defined as the optimization problem

max
ξ∈S(Nb)

min
θ∈Θ

U(ξ,θ) ,

where

S(Nb) =
{

ξ ∈ {0, 1}Nd : |ξ| = Nb

}
,

and the utility (objective) U is chosen to quantify the quality of the design.

Budget-Constrained Probabilistic Robust OED

Assume that ξ is a random variable endowed with the conditional Bernoulli distribution

P(ξ|p, |ξ| = Nb). Then, the budget-constrained probabilistic robust OED problem replaces

the classical robust OED formulation with the following policy optimization problem:

max
p∈[0,1]Nd

U(p) := Eξ∼P(ξ|p,|ξ|=Nb)

[
min
θ∈Θ

U(ξ,θ)
]
.

We denote U as the stochastic objective. Furthermore,

∇pU(p) ≈ 1
Nens

Nens∑
k=1

[
min
θ∈Θ

U(ξ[k],θ) ∇p log P(ξ[k]|p, |ξ| = Nb)
]
.

Critically, this does not require design gradients of U ! Nevertheless, does require Uθ.

PDE-Constrained Nonlinear Bayesian Inverse Problems

Prior Knowledge

Data Error Model Governing Equations

Data 

Likelihood

Laplace Approximation

The forwardmodel is governed by the PDE: Givenm ∈ M , find u ∈ U such that a(u,m, p) =
0 for all p ∈ V . Furthermore, we employ the Laplace approximation to the posterior µy

LA.

Sample Averaged Expected Information Gain (EIG)

We employ a sample-averaged approximation of the EIG as our utility:
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where we have assumed a Laplace approximation to the posterior measure and H̃m =
C1/2

pr HmC1/2
pr . Since H̃m is typically low-rank, we furthermore write:
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Adjoint-Based Eigenvalue Sensitivity Techniques

The forwardmodel is governed by the PDE: Givenm ∈ M , find u ∈ U such that a(u,m, p) =
0 for all p ∈ V .

It can be demonstrated that (Hm, {λn, ψn}rn=1) obey the eigenproblem constraints

〈φ,Hmψn〉 = λn 〈φ, ψn〉C−1
pr
, ∀φ ∈ V ,∀n = 1, . . . , r ,

〈ψn, ψn〉C−1
pr

= 1, ∀n = 1, . . . , r ,

and Hm has the following system dictating its action

Hm(m)(ψn, φ) = 〈φ, amp(u,m, p)p̂〉 ,
with state and adjoint constraints

〈p̃, ap(u,m, p)〉 = 0, ∀p̃ ∈ V ,

〈ũ, au(u,m, p)〉 +
〈
ũ,Q∗Γ̂†

n(ξ,θ)(y − Qu)
〉

= 0, ∀ũ ∈ U ,

and incremental state and adjoint constraints for n = 1, . . . , r:
〈p̃, apu(u,m, p)ûn〉 + 〈p̃, apm(u,m, p)ψn〉 = 0, ∀p̃ ∈ V ,

〈ũ, aup(u,m, p)p̂n〉 +
〈
ũ,Q∗Γ̂†

n(ξ,θ)Qûn

〉
= 0, ∀ũ ∈ U .

Hence, after fixing the MAP estimate in ξ and θ, we define the utility

U := 1
2NSAA

NSAA∑
i=1

[
r∑

n=1

[
log

(
1 + λin(ξ,θ)

)
− λin(ξ,θ)
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+
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∥∥2
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]
.

We can differentiate through this using a formal Lagrangian approach.

Numerical Experiments

−∇ · (exp(m)∇u) = 0 in Ω := (0, 1)2 ,

exp(m)∇u · n = 0 on ΓN := {0, 1} × (0, 1) ,
u = g on ΓD := (0, 1) × {0, 1} .

and
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{
σ2
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,
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