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Worst-Case Robust OED Formulation 0, ifi=Ng+2?
Consider the set of candidate sensor locations § = {s1, s9, ..., sxn,}, and let N, < Ny be the Data Error Model Governing Equations aoiace A Y N
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SNy = deefo, 1% g =N The forward model is governed by the PDE: Givenm € ., findu € % such that a(u, m, p) = -JEEN () 027 [0.35 N
b) = ’ ISP b 0 for all p € #. Furthermore, we employ the Laplace approximation to the posterior p7 ,.
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and the utility (objective) U is chosen to quantify the quality of the design.
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_ We employ a sample-averaged approximation of the EIG as our utility:
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The forward model is governed by the PDE: Givenm € ., findu € % such that a(u, m,p) = KLAS7 KL ’
Assume that & is a random variable endowed with the conditional Bernoulli distribution 0forallpe?.
P(€]p. |£‘, = Np). Then, the budgefc—con.stramed prob§b|l|sh; robu;t OED problem replaces 't can be demonstrated that (H., {\n, ¥n},—;) obey the eigenproblem constraints References
the classical robust OED formulation with the following policy optimization problem:
<¢7 Hmwn> — )\n <¢7 wn>(}p—r1 9 V¢ < /77 \V/n — 17 ceey T Ahmed Attia.
pén[oaf]CNd Ll( ) = EﬁNP(S\p,IEIZNb) [glel(gl Z/{(f, 9)] : <¢m wn>6p—rl =1, V1, = 17 T E;’;Cbear:!ir??c approach to black-box binary optimization with budget constraints: Application to sensor
We denote 4 as the stochastic objective. Furthermore, and H,, has the following system dictating its action arxiv preprint arXiv:2406.05830, 2024. .;‘;.i..,.
N N Abhijit Chowdhary, Ahmed Attia, and Alen Alexanderian. arxiv .
1 - _ Hm<m) (wm gb) — <¢7 amp(uv m, p)p> ) Robust optimal design of large-scale bayesian nonlinear inverse problems. ';:‘%
Vpll(p) = N Z it UK, 0) VplogP(ELL]|p, €] = Ny)| witth it 2 adieint constiiis arXiv preprint arXiv:2409.09137, 2024.
T k=1 Abhijit Chowdhary, Shanyin Tong, Georg Stadler, and Alen Alexanderian. :.3..: by
Critic:ally, this does not requ]re design gradients of U! Nevertheless, does FGQU]I’G Ug. <ﬁ, ap(u m p>> = O, Vﬁ - 7/, Sensih’v.ity analysis of the informaﬁon gaih in ihﬁnite—dimensional bayesian linear inverse problems.
<@ . (u - p)> <u Q*I‘T (f H)(y Qu)> _ O Vil e % International Journal for Uncertainty Quantification, 14(6), 2024.
E¢p(p) [mint(, 6)] S | .
i -0, @ and incremental state and adjoint constraints forn =1, ..., r: Funding
p— 1 N N N B N
(B, apu(tt, M, p)tin) + (B, dpm(u, M, P)thn) =0, VPETY, The work of A. Chowdhary and A. Alexanderian was supported in part by US National Sci-
‘ ~ N ~ *AT N ~ . . .
(T, (1, 1, D)D) + <U, QT (&, H)Qun> = 0, Yue U . ence Foundation grants DMS #2111044. The work of A. Alexanderian was also supported in
0=0;@ - fter fixing the MAP estimate i 40 define the Utilit part by US National Science Foundation grants DMS #1/45654. The work of Ahmed Attia is
Eg¢pp) minf (€, 0)] S e x;ng _we ) estimate in & and 6, \_Ne - n_e - _ supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific
0=0:-@ --.. ’ 3 1/ 1 SSA#* ST‘ | (1 (e 0)) B A (E,0) N H ; (ga” 9) - 2 Computing Research (ASCR), ASCR Applied Mathematics Base Program, and Scientific Discov-
> ® el ~ 2Ngaa 4 | = oe s 1+ A (&,0) MpostS Morflez] - ery through Advanced Computing (SciDAC) Program through the FASTMath Institute under
X . . - - - tract number DE-AC02-06CH11357 at A National Laboratory.
0.6) IE\ minll(c, ) k\ We can differentiate through this using a formal Lagrangian approach. QAL NUMBbEr AL ATSONNE NGHONAl LabOTatory
min (0, 6 max Le p(p) (1111 ) )
0 P 0 min(1, 6)
| >
p=0 p=1



